본문 바로가기

AI

(5)
DETR + SAM 으로 Zero-shot Instance Segmentation 구현하기 개요local 환경에서 DETR 로 검출 된 object 의 bbox 를 SAM 에 prompt 입력으로 넣어 Instance Segmentation 을 수행하는 방법을 구현한다. 사용 모델Segment Anything [논문리뷰] Segment AnythingSegment Anything (SAM) 논문 요약논문에서는 Segment Anything (SA) 프로젝트를 소개하며, 이미지 분할을 위한 새로운 모델, 데이터셋, 및 태스크를 제안한다. 이를 통해 프롬프트 기반 분할(promptable segmentagugalove.tistory.com  Segment AnythingMeta AI Computer Vision Researchsegment-anything.com DETR End-to-End Obj..
[논문리뷰] ComKD-CLIP: Comprehensive Knowledge Distillation for ContrastiveLanguage-Image Pre-traning Model https://arxiv.org/abs/2408.04145 ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning ModelContrastive Language-Image Pre-training (CLIP) models excel in integrating semantic information between images and text through contrastive learning techniques. It has achieved remarkable performance in various multimodal tasks. However, the deployment ofarxiv.orgComK..
Airflow 디버깅 및 수정내용 개요MLOps 과정 'Airflow 구성하기 - 예제 2 _ 파트 2' 에서 메모리 문제로 error 발생한 부분에 대한 디버깅 및 수정 내용입니다.디버깅 후 수정이라 Airflow 개발 내용은 생략 합니다. 문제점최종 Airflow HuggingFace 데이터셋 등록 과정에서 에러 발생Hugging Face 에 gugalove/mlops_gsod 로 create_repo 는 되나 데이터셋이 업로드 안됨 수정내용도커의 메모리 부족 의심되어 아래와 같이 Memory 확장 하였으나 failed 되는 시간만 늘어나고 결국 에러 발생 함디버깅 코드 추가 하여 문제점 확인mlops-quicklab/airflow/basic/dags/bigquery_to_huggingface.py18Gb 로 확장해도 결국 메모리 ..
Apple M4 pro vs M1 학습 속도 비교(GPU, CPU) 개요Apple M4 Pro 칩(14코어 CPU, 20코어 GPU, 16코어 Neural Engine) 을 장착한 Macbook Pro 14 에서 tensorflow 로 구현한 ResNet 과 VGG16 의 CPU 와 GPU 의 학습 속도를 비교해 보고 M1 MacMini 와의 차이는 어느 정도인지 확인한다. 살펴보기MPS (Metal Performance Shaders)MPS (Metal Performance Shaders)는 Apple의 GPU 가속 프레임워크인 Metal API를 기반으로 한 고성능 컴퓨팅 라이브러리입니다. 주로 Apple Silicon(M1, M2, M3, M4 등)과 macOS에서 머신 러닝 및 그래픽 연산을 가속화하기 위해 사용됩니다. MPS의 주요 특징 1. Apple의 GPU..
Vanishing Gradient 와 Dead Neuron 개요두 문제는 인공 신경망에서 학습을 방해하는 중요한 문제로, 각기 다른 메커니즘과 원인에서 발생합니다. 문제의 원인과 차이점을 명확히 알아보겠습니다. 1. Vanishing Gradient 문제정의: 역전파(backpropagation) 과정에서 가중치 업데이트를 위한 gradient(기울기)가 층을 지나면서 점점 작아져, 최종적으로는 거의 0에 가까워지는 문제를 말합니다. 이로 인해 네트워크의 초기 층은 거의 학습되지 않게 됩니다.발생 원인: 주로 sigmoid 또는 tanh 같은 활성화 함수에서 발생하며, 이 함수들은 특정 입력 값에서 기울기가 매우 작기 때문에 역전파 과정에서 gradient 가 소멸하는 경향이 있습니다.영향: gradient 가 소멸되면서 가중치 업데이트가 제대로 이루어지지 않아..