본문 바로가기

tensorflow

(6)
Apple M4 pro vs M1 학습 속도 비교(GPU, CPU) 개요Apple M4 Pro 칩(14코어 CPU, 20코어 GPU, 16코어 Neural Engine) 을 장착한 Macbook Pro 14 에서 tensorflow 로 구현한 ResNet 과 VGG16 의 CPU 와 GPU 의 학습 속도를 비교해 보고 M1 MacMini 와의 차이는 어느 정도인지 확인한다. 살펴보기MPS (Metal Performance Shaders)MPS (Metal Performance Shaders)는 Apple의 GPU 가속 프레임워크인 Metal API를 기반으로 한 고성능 컴퓨팅 라이브러리입니다. 주로 Apple Silicon(M1, M2, M3, M4 등)과 macOS에서 머신 러닝 및 그래픽 연산을 가속화하기 위해 사용됩니다. MPS의 주요 특징 1. Apple의 GPU..
Residual Network 구현 및 학습 Residual Network (ResNet) 개요와 핵심 내용 정리Residual Network(ResNet)는 딥러닝 모델에서 신경망을 깊게 쌓을 때 발생하는 문제를 해결하기 위해 2015년 He et al.이 제안한 네트워크입니다. ResNet은 특히 딥러닝 모델의 깊이 증가에 따른 성능 저하 문제와 그래디언트 소실 문제를 해결하는 데 중요한 기여를 했습니다. 이 글에서는 ResNet의 기본 개념과 논문에서 강조된 중요한 내용들을 정리해 보겠습니다.1. ResNet의 주요 문제 해결 접근딥러닝 모델의 깊이 문제: 딥러닝에서는 일반적으로 모델의 깊이를 늘리면 더 높은 수준의 표현 학습이 가능해지지만, 지나치게 깊은 모델은 학습이 어려워지고 성능이 오히려 저하될 수 있습니다. 이러한 문제의 주요 원인 ..
TensorFlow 함수형 API 로 VGGNet 논문 구현 VGGNet (2014)16~19개의 깊은 층을 쌓아 네트워크의 깊이와 성능 간의 관계를 조사3x3 Convolution Layer 를 여러 개 쌓는 단순하고 일관된 구조를 사용K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," in International Conference on Learning Representations (ICLR), 2015.주요 특징단순한 구조:VGGNet의 구조는 매우 단순합니다. 3x3 크기의 작은 필터를 사용하는 합성곱 층(convolutional layer)과 최대 풀링 층(max pooling layer)을 깊게 쌓아 올린 형태로 설계되었습니다..
TensorFlow 함수형 API 로 AlexNet 논문 구현 AlexNet (2012)딥러닝이 주목받는 계기가 된 모델로, 5개의 Convolutional Layer와 3개의 Fully Connected Layer로 구성ReLU 활성화 함수와 Dropout을 도입하여 학습 성능 향상.A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," in Advances in Neural Information Processing Systems (NIPS), 2012.AlexNet은 2012년 ImageNet 대회에서 우승하며 딥러닝의 가능성을 널리 알린 모델입니다.구성: 5개의 Convolutional Layer와 3개의 Fully..
TensorFlow 사용자 정의 metric 만들기 개요케창딥 7장 내용 중 사용자 정의 metric 만들기에 대한 실습과 디버깅 과정을 기록합니다. 사용자 정의 metric 만들기개념함수형 정의 방법과 클래스 정의 방법 2가지가 있습니다.클래스 정의 방법은 tf.keras.metrics.Metric 클래스를 상속받아 사용자 정의 metric 을 정의할 수 있습니다.이 방식은 상태(state)를 저장하고, update_state, result, reset_states 메서드를 구현하여 유연하게 동작 합니다.  코드 예제 import tensorflow as tf# 사용자 정의 메트릭 클래스class CustomMetric(tf.keras.metrics.Metric): def __init__(self, name="custom_metric", **kwa..
Human Activity Recognition on STM32L4 IoTnode Human Activity Recognition on STM32L4 IoTnode 개요     ▶ 직장인이자 인공지능을 공부하는 대학원생으로 지금까지 머신러닝이나 딥러닝을 PC 기반에서 python framework 에서 지원하는 모델들에 대한 이론과 실습예제 등을 공부 해왔는데 실제로 Edge AI 기반의 임베디드 디바이스에서 돌아가는 실제 눈으로 볼 수 있는 project 를 해보고 싶었다. 그래서 해당 MCU 에 경험이 있고 비교적 접하기 쉬운 STMicroelectronics 사의 B-L475E-IOT01A02 개발보드를 구매 하여 토이 프로젝트를 진행하였고 과정을 정리 한다.     ▶ B-L475E-IOT01A Link: https://www.st.com/content/st_com/en/pro..